
About Lab 3

Lab 3 has a lot of scaffolding that is already
implemented for you:
• There is a Square class that is completely

implemented for you. Squares know their row
and column in the maze, they know what type
they are (open, wall, start or exit), you can mark
them and set their previous square.

• There is Maze class that is completely
implemented. This has a method loadMaze()
that reads a maze from a textfile, and methods
getStart() and getExit() to find the start and exit
squares.

• The Maze class also has as method
getNeighbors(Square sq) that returns a list of the
neighbors of sq. This includes all squares above,
below, left, or right of sq even if they are walls or
already marked.

• There is a MazeSolver abstract class that is
sketched out, but its important details are left for
you to implement. MazeSolver has abstract
methods for the worklist: isEmpty(), Square
next(), add(Square sq) etc. Leave those as
abstract.

You need to write two concrete methods of
MazeSolver:
• step() does one step of the algorithm in terms of

the abstract worklist methods: If isEmpty() says
the worklist is empty there is no solution.
Otherwise use next() to get a Square from the
worklist. Let’s call this square current. If current is
the exit square you are done. If it isn’t then
maze.getNeighbors(current) is a list of current’s
neighbors. Mark those neighbors whose type
isn’t WALL and who aren’t already marked, set
their previous node to current, and add them to
the worklist

• step() should change MazeSolver’s variable
pathFound to true when the exit node is found,
and variable finished to true when either the
exit node is found or you are sure there is no
solution.

• The other method of class MazeSolver that you
need to write is getPath(), which returns an
ArrayList<Square> that goes from the start square
to the exit square.

• Finally, there are two concrete subclasses of
MazeSolver that use specific implementations of
the worklist. These are MazeSolverStack, which is
completely implemented, and MazeSolverQueue
which is not. If you read MazeSolverStack
carefully you should see what you need to do for
MazeSolverQueue.

So here is what you need to do for Lab 3:
a) Implement MyStack<E> using an

ArrayList to hold the data. Test your
implementation.

b) Implement MyQueue<E> using a
linked structure to hold the data. Test
your implementation.

c) In the MazeSolver abstract class you
need to write methods step() and
getPath()

d) Implement MazeSolverQueue
You should then be able to run the MazeApp.

